Noncolliding system of continuous-time random walks
نویسندگان
چکیده
منابع مشابه
Oracle Continuous Time Random Walks
Abstract. In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. Some applications require the anticipating version, an oracle continuous time random walk (OCTRW), where the next jump after any g...
متن کاملEvanescent continuous-time random walks.
We study how an evanescence process affects the number of distinct sites visited by a continuous-time random walker in one dimension. We distinguish two very different cases, namely, when evanescence can only occur concurrently with a jump, and when evanescence can occur at any time. The first is characteristic of trapping processes on a lattice, whereas the second is associated with spontaneou...
متن کاملNonindependent continuous-time random walks.
The usual development of the continuous-time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper, we address the theoretical setting of nonindependent CTRWs where consecutive jumps and/or time intervals are correlated. An exact solution to the problem is obtained for the special but relevan...
متن کاملCluster Continuous Time Random Walks
In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single ...
متن کاملChemical Continuous Time Random Walks.
Kinetic Monte Carlo methods such as the Gillespie algorithm model chemical reactions as random walks in particle number space. The interreaction times are exponentially distributed under the assumption that the system is well mixed. We introduce an arbitrary interreaction time distribution, which may account for the impact of incomplete mixing on chemical reactions, and in general stochastic re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics for Industry
سال: 2014
ISSN: 2198-4115
DOI: 10.1186/s40736-014-0011-z